emand-Driven Innovation. Epic Results.

hestr 🔠

We all aim to optimize all kinds of aspects of our business, but we all also are aware it's very challenging to put reality in an optimization model. Nevertheless, we require insights which enable us to prevent poor decision making. More than ever, variability has become a constant factor in our life whereby we still need to make the best decisions. The ability to carry out "what-if" analysis that lead to a "best" setup of the supply chain is

more and more appreciated. *Simulation makes us better understand how various components interact with each other and how they affect overall supply chain performance.*

Simulation

Orchestr8 empowers businesses to do so by means of its module *Simulat8*. It's installed along with Oper8 and *allows users to model and plan across the supply chain.*

The module can cope with *historical what-if simulations* and with *forward simulations* to show the potential impact of the current forecast given existing parameters. Capacity planning reports are linked to the forward simulation functionality to allow resources and physical supply chain elements to be planned effectively. Results are generated in terms of likely stock profiles, number of transactions (make events, sales, orders and receipts), space requirements and resource required in man hours to support the model.

How does it work? We provide five types of simulation capabilities, being

- 1. Part Simulation
- 2. Historical Simulation on group of parts, BOM included
- 3. Forward Simulation on group of parts, BOM included
- 4. Forward Simulation Capacity
- 5. Historical Simulation Capacity

For a detailed description of these five types of simulation capabilities, we invite you to have a look on page 3 and further.

In both historical and forward simulations, key supply chain parameters can be altered (e.g.

Run	Summary	Detai	1	Stock Outs	Parameter	s VVA S	upplier	
VVA Planner	Part Repor	t Part+Stk	Rep P	art Demand	Activity	Stock	Activity	
Capacity	Schedule	Weekly S	& D 🛛 🕅	lonthly S & D	Where Use	ed B(MC	Scenarios
Display	All Part	s O Purchased	OManuf	actured				
Display Period	01/04/20	15	to 31/07	/2015	🔲 S&D S	election All		-
Results								
Forecast Type	Supplier	Defaults	Availab	le Date Range	27/01/2015	to	01/08/2015	5
Demand			Supply			Inventory		
Number of Demand	Orders	335	Number o	f Orders	199	Av On-Ha	nd Inventory	831803.4
Qty Ordered		2825568.00	Qty Order	ed	3286400.00		Value	90301.52
Value of Demand O	rders	308624.51	Value of C	Orders	358622.80	Max On-Hai	nd Inventory	1041934.0
Number of Orders fr	om Inventory	320	Number o	f Receipts	176		Value	113141.53
Number of Items		90	Qty Recei	ved	3041840.00	Min On-Ha	nd Inventory	425419.0
Number of Items Or	dered	36	Value of F	Receipts	332677.00		Value	44774.07
Number of MTO Ore	ders	25				Av Bu	fer Inventory	140505.0
Metrics							Value	15812.17
Order Level Custom	ner Service %	95.52	Average N	umber of Contai	ners - Mixed	150.49	UnMixed	171.48
						-	-	

forecast, lead time, service target etc.) to allow the impact of altering the operating rules in the supply chain. This allows quick impact analysis and business case development as well as supporting an analysis of Total Cost of Ownership for bought products.

Simulations can be run at item and group level giving users flexibility.

In brief

- Simulate using known historical demand data or forecast data
- Simulate items or groups of items
- Alter planning rules, dates, service levels, targets, lead time, MOQ, forecast or demand data to run different scenarios
- Ability to save and access scenarios after they have been run
- Run simulations across multiple nodes in the supply chain
- Full Bill of Material support in simulations
- Scenarios produce detailed supply chain planning outputs in terms of:
 - ✓ Orders / transactions
 - ✓ Service levels achieved
 - ✓ Inventory levels and turns
 - ✓ Capacity required production and space
 - ✓ By volume and value
 - ✓ Drill down by product group or item

How does it work? As mentioned earlier, we provide five types of simulation capabilities, being

- 1. Part Simulation
- 2. Historical Simulation on group of parts, BOM included
- 3. Forward Simulation on group of parts, BOM included
- 4. Forward Simulation Capacity
- 5. Historical Simulation Capacity

Dirchestre Simulation

Sim Part Sim	ulation
Selectors: All Parts	
Part Number 11000070505	STEEL NOSE CLIPS FOR CPC
Run R	eport Rept & Stock Dmnd Profile Activity Capacity
W/C Schedule Sch	weekly S & D Monthly S & D Reset Settings
Starting On-Hand Inventory	1040 Inventory Target 1040 Override Target Current Target / FEP
Simulation Date Range	02/02/2015
Rebuild Demand	Scale Demand on Forecast Data Available 02/02/2015 to 01/08/2015
Batch Qty	260
Supplier Information	
Supplier Code	BRANDAUER Number of Days History 180 Number of Days Forecast 89
Forecast Type	
Part Information	Copy to Live Copy to Import
Replenishment Leadtime	7 Min Batch 260 Multiple Batch 260 Max Batch 0
Part Type Code	RM Material Cost 6.26 Phase In 01/01/1900 Phase Out 01/01/2999
Manfactured / Purchased	Purchased Buffer Inventory 0 Buffer Days 0
Rule Information	Copy to Live
Rule	ROC BRANDAUER Batch Rules 🗹 Default Num KB's 7
Call-Off Leadtime	Rule Call-Off LT 7 Days
Service Level	99 % Order Early 🗹 100% Service 🗌 Leadtime Inv Only
Delivery Frequency	1 Weeks Del Days Su Mo Tu We Th 🗹 Fr Sa

Part Simulation

Part simulation is a program that lets the user run a simulation of supply chain performance for one item over a defined period of history.

The programs start by calculating the inventory target that currently applies using the current inventory rules for the part. Having obtained the inventory target the program then re-runs history over the period defined in the start and end dates for the simulation range. The program uses the historical demand usage of the

part over this period to simulate what new orders would be raised each day applying the appropriate inventory rule and target for the part or group of parts. Taking the expected leadtime for delivery we can then show when the inventory would be received into stock, and the resulting on hand inventory level.

The simulation therefore provides an on hand inventory level profile over the simulated date range as well as the number and value of orders raised and consumed. This can be

used for capacity analysis purposes.

The Part Simulation page is highly functional and interactive, allowing the user to change parameters related to the part and rule information and re-run simulations to quickly compare results without affecting the current

live master data settings. Part Simulation is typically used to validate the selection of inventory rules drawn from the VVA analysis.

Historical Simulation

S	S im Historical Simulation								
Sele	ctors:								
	Run	Summary	Detai	1	Stock Outs	Paramete	rs VVA Su	pplier	
	VVA Planner	Part Report	Part+Stk	Rep	Part Demand	Activity	Stock A	ctivity	
	Capacity	Schedule	Weekly S	& D	Monthly S & D	Where Use	ed BO	M	Scenarios
	Display	All Parts	OPurchased	ON	lanufactured				
	Display Period	01/04/201	15	to 3	1/07/2015	5808	Selection All		Ŧ
	Results								
	Forecast Type	Supplier I	Defaults	Av	ailable Date Range	27/01/2015	to	01/08/2015	5
	Demand			Supp	bly		Inventory		
	Number of Demand	Orders	335	Numi	per of Orders	199	Av On-Han	d Inventory	831803.4
	Qty Ordered		2825568.00	Qty C	Ordered	3286400.00]	Value	90301.52
	Value of Demand Or	ders	308624.51	Value	e of Orders	358622.80	Max On-Hand	Inventory	1041934.0
	Number of Orders fro	om Inventory	320	Num	per of Receipts	176]	Value	113141.53
	Number of Items		90	Qty F	teceived	3041840.00	Min On-Hand	i inventory	425419.0
	Number of Items Ord	lered	36	Value	of Receipts	332677.00]	Value	44774.07
	Number of MTO Ord	ers	25				Av Buffe	er Inventory	140505.0
	Metrics							Value	15812.17
	Order Level Custom	er Service %	95.52	Avera	ge Number of Conta	iners - Mixed	150.49	UnMixed	171.48
	Piece Level Custom	er Service %	97.85		Inventory Turns per	Annum - Units	10.22	Value	10.28

The historical simulation is a program that lets the user run a simulation of supply chain performance for a group of parts over a defined period of history.

The program starts by calculating the inventory targets that currently apply using the current inventory rules for the parts in the group. Having obtained the inventory targets the program then

Demand-Driven Innovation, Epic Results.

re-runs history over the period defined in the start and end dates for the simulation range. The program uses the historical demand usage of each part over this period to simulate what new orders would be raised each day applying the appropriate inventory rule and target for the parts. Taking the expected leadtime for delivery we can then show when the inventory would be received into stock, and the resulting on hand inventory level.

The simulation run therefore provides an on hand inventory level profile over the simulation date range as well as the number and value of orders raised and consumed, that can be used for capacity analysis purposes.

The historical simulation collects the results for each individual part and presents the results summarised by supplier, part type code or part number.

The Historical simulation has additional functionality that allows it to blow through a manufacturing BOM, to generate simulation results for multiple levels in the BOM structure, e.g. to simulate the performance and requirements for inbound inventory holding which is used to supply a factory environment and finished goods inventory position.

The Historical simulation page is highly functional and interactive, allowing the user to change parameters related to the part and rule information and re-run simulations to quickly compare results without affecting the current live part master data. These parameters can be easily reset to

parameters can be easily reset to their original value.

Historical simulation is typically used to validate the selection of inventory rules created by using the VVA analysis.

Historical Simulation Scenarios

The scenario capability allows the user to save results from group simulations. This

S im Historical Simulation Scenarios								
Scenario Name	Date Saved	User Name						
New Sim	23/05/2011	Mark Robinson						
New Sim 2	02/06/2011	Raymond Brown						
Jacobi 1 Rate Based	18/01/2012	Raymond Brown						
Ferro Sim ideal	22/06/2012	Raymond Brown						

screen allows the user to retrieve the scenario to review all of the associated options for that scenario. This screen also allows the user to manage the saved scenarios.

Demand-Driven mnovation. Epic Resul

Forward Simulation

S im Forward Simulation								
Selectors: All Parts								
Run	Summary	Detail		Stock Outs	Paramete	rs VVA S	upplier	
VVA Planne	Part Repor	t Part Dem	and	Activity	Stock Activ	rity Capa	acity	Email Reports
Schedule	Weekly S &	D Monthly S	& D	Where Used	BOM	F'cast	Rules	Scenarios
Display	All Part	ls O Purchased	ON	lanufactured	Load Fe	orward Plan	Load	
Display Period	01/07/20	15	to 3	1/12/2015	1 S&D S	Selection All		*
Results								
Forecast Type	Supplier	Defaults] A	vailable Date Range	01/08/2015	to	22/08/201	6
Demand			Sup	ply		Inventory		
Number of Dema	and Orders	23	Num	ber of Orders	2	Av On-Har	d Inventory	196.0
Qty Ordered		130.00	Qty C	Drdered	224.00]	Value	3210.07
Value of Deman	d Orders	2129.21	Value	e of Orders	3668.80	Max On-Han	d Inventory	258.0
Number of Orde	s from Inventory	23	Numi	ber of Receipts	1]	Value	4225.67
Number of Items		1	Qty F	Received	112.00	Min On-Han	d Inventory	146.0
Number of Items	Ordered	1	Value	e of Receipts	1834.40]	Value	2391.27
Number of MTO	Orders	0	Avera	ige Number of Conta	iners - Mixed	195.99	UnMixed	196.14
Metrics								
Order Level Cus	tomer Service %	100.00		Inventory Turns per	Annum - Units	1.32	Value	1.32
Piece Level Cus	tomer Service %	100.00						

The forward simulation is a program that lets the user run a simulation of supply chain performance for a group of parts over a defined period into the future.

The program starts by calculating the inventory targets that currently apply using the current inventory rules for the parts in the group selected. Having obtained the inventory targets the program then runs a forward simulation over the defined simulation period going out into the future. The program uses the

forward plan table for each part over this period to simulate what new orders would be raised each day applying the appropriate inventory rule and target for the parts. Taking the expected lead time for delivery we can then show when the inventory would be received into stock, and the resulting on hand inventory level.

The simulation run therefore provides an on hand inventory level profile over the simulation date range as well as the number and value of orders raised and consumed, that can be used for capacity analysis purposes. A secondary use of the forward simulation is to give a predictive forward ordering schedule. In this mode we can choose to include current inventory targets and current open orders in the simulation and then the program will calculate and add in the planned orders that we are likely to raise over the simulation period. This can be used as a predictive forecast plan for suppliers that require increased forward visibility.

The forward simulation collects the results for each individual part and presents the results summarised by supplier, part type code or part number.

The forward simulation has additional functionality that allows it to blow through a manufacturing BOM, to generate simulation results for multiple levels in the BOM structure, e.g. to simulate the performance and requirements for inbound inventory holding which is used to supply a factory environment and finished goods inventory position.

The Forward Simulation page is highly functional and interactive, allowing the user to change parameters related to the part and rule information and re-run simulations to quickly compare results.

Forward Simulation is typically used to validate the selection of inventory rules created well as creating capacity planning information.

Forward Simulation Scenarios

The scenario capability allows the user to save results from forward simulations. This screen allows the user to retrieve the scenario the review all of the associated options for that scenario. This screen also allow the use to manage the saved scenarios.

S im Forward Simulation Scenarios								
Grand Harrison Report								
Scenario Name	Date Saveu	User Wante	compare					
Pringy go live 1	24/02/2015	raymond brown						
go live sim RB DoS	02/03/2015	raymond brown						
go live sim 2	02/03/2015	raymond brown						
latest simulation pierre	03/03/2015	Raymond Brown						
RB sim for analysis	04/03/2015	Raymond Brown						
93942JR fixed target	10/03/2015	Raymond Brown						
Scenario 1 DDI standard not OE	10/06/2015	raymond brown						

Forward Simulation Capacity

This capacity screen provides the ability to review the existing firm orders alongside planned orders within the current capacity plan. This view clearly illustrates the loading by period and work centre with an indicator of the available capacity. The opportunity to consider machine or line change over requirements is also available.

This functionality should form part of a periodic (weekly or monthly) sales and operations planning process (S&OP) to assess and understand current and future capacity requirements.

Historical Simulation Capacity

This capacity screen provides ability to review the the historical actual loading on a work centre for a period in the This view past. clearly illustrates the loading by period work centre, and whilst indicating what the available capacity was for that period. Machine or line change over

requirements is also included for review.